modul/config.toml
frei. Sie müssen den folgenden Wert anpassen.
mathJax = "true"
When $a \ne 0$, there are two solutions to \(ax^2 + bx + c = 0\) and they are
$$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$
$
umschlossen$$
begrenzt<p>
When
<math xmlns="http://www.w3.org/1998/Math/MathML">
<mi>a</mi><mo>≠</mo><mn>0</mn>
</math>,
there are two solutions to
<math xmlns="http://www.w3.org/1998/Math/MathML">
<mi>a</mi><msup><mi>x</mi><mn>2</mn></msup>
<mo>+</mo> <mi>b</mi><mi>x</mi>
<mo>+</mo> <mi>c</mi> <mo>=</mo> <mn>0</mn>
</math>
and they are
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">
<mi>x</mi> <mo>=</mo>
<mrow>
<mfrac>
<mrow>
<mo>−</mo>
<mi>b</mi>
<mo>±</mo>
<msqrt>
<msup><mi>b</mi><mn>2</mn></msup>
<mo>−</mo>
<mn>4</mn><mi>a</mi><mi>c</mi>
</msqrt>
</mrow>
<mrow> <mn>2</mn><mi>a</mi> </mrow>
</mfrac>
</mrow>
<mtext>.</mtext>
</math>
</p>
<p>When `a != 0`, there are two solutions to `ax^2 + bx + c = 0` and
they are</p>
<p style="text-align:center">
`x = (-b +- sqrt(b^2-4ac))/(2a) .`
</p>
`x = (-b +- sqrt(b^2-4ac))/(2a) .`
\begin{equation}
E = mc^2
\end{equation}
\begin{equation}
a+b+c+d+e+f+g
\end{equation}
<p>\[
\left( \sum_{k=1}^n a_k b_k \right)^{\!\!2} \leq
\left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)
\]</p>
<p>\[
1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots =
\prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})},
\quad\quad \text{for $|q|<1$}.
\]</p>
<p>
\begin{align}
\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\
\nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\
\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\
\nabla \cdot \vec{\mathbf{B}} & = 0
\end{align}
</p>